奇迹小说
首页
书库
排行榜
作家福利
登 录作家专区

第5章 他们用五分钟证明了相对论

第5章 他们用五分钟证明了相对论

书名:人类的勇气作者名:沉思一会儿-奇迹小说家本章字数:2520更新时间:2024-06-13 08:41:45

1919年5月29日,在非洲西海岸的普林西比岛(Principe),英国天文学家亚瑟·爱丁顿(Arthur Eddington,1882-1944)对一场为时五分钟的日食进行了观测,拍下了人类历史上最重要的一张日食照片。半年的数据分析之后,他们在伦敦召开了新闻发布会,马上成了全世界的头条:爱因斯坦的相对论取得胜利。

伟大的五分钟 

如何验证相对论是否正确?在许多方面,相对论的推论与牛顿力学大致相同,只有在宇宙的尺度,两者才会产生分歧。有几个关键的现象可以成为检验这一新理论的试金石,其中之一就是日食。

按照爱因斯坦的理论,当光线通过引力场的时候,路线会发生弯折。当发生日食的时候,太阳附近的恒星将不再被太阳的光芒掩盖,并且由于太阳引力的作用,恒星发出的光线在到达地球之前发生了弯折,因此我们看到的恒星的位置将偏离它们的实际位置,具体而言,位移值是 1.74 角秒。

早在相对论全部完善之前几年,爱因斯坦就提出了这样的预言,但是在战争年代组织一场日食观测何其困难。德国和美国的天文学家至少三次尝试进行观测,但总是因为天气原因而无法拍摄。最倒霉的是 1914 年 8 月那一次,埃尔温·芬莱-弗罗因德里希(Erwin Finlay-Freundlich,1885-1964)和威廉·华莱士·坎贝尔(William Wallace Campbell,1862-1938)去往俄国准备拍摄,这时候德国对俄国宣战了。于是日食还没开始,俄国就逮捕了来自德国的弗罗因德里希,要求交换被俘虏的士兵。

坎贝尔是美国人,得以留下拍摄,却碰上了阴天。日食结束后,他迅速撤离了俄国,连带来的珍贵仪器都没有运走。

在英国,爱因斯坦的论文经荷兰偷运过来,到达当时的英国皇家天文学会秘书长爱丁顿的手上。爱丁顿对此很感兴趣,他设法克服当时国内激烈的反德情绪,将爱因斯坦的工作介绍给同行,并着手准备这次日食观测。

此时一战已经接近尾声,局势十分紧张。爱丁顿信奉贵格教,反对战争,一再申请免服兵役,差点因此被送进监狱。他的同事兼好友弗兰克·戴森(Frank Dyson,1868-1939)也出面为他求情,试图用国家荣誉说服军方。

爱丁顿可以说相当走运,他在最后关头被免除兵役。接下来,在 1918 年 11 月 11 日,一战结束了。爱丁顿与同事们立即准备前往普林西比岛,等待那次持续 5 分钟的的日食观测。为了确保万无一失,他还将另一队人马派往巴西的索布拉尔(Sboral),拍摄备用照片。

这次拍摄很顺利。到 1919 年 11 月,爱丁顿团队在伦敦召开新闻发布会。远在德国的爱因斯坦躺在病床上,通过荷兰的转播得知了这一消息。

这次日食观测两年后,爱因斯坦被授予诺贝尔物理学奖,却不是因为相对论,而是表彰他“对理论物理的贡献,尤其是对光电效应的理论解释”。这个奖发得有些尴尬:此时爱因斯坦早已声名鹊起,提名的呼声很高;但广义相对论仍然没有完全被证实,只好另外找个由头给他颁奖。

除了日食之外,广义相对论还预言了引力红移和引力波的性质。引力红移指光的波长随引力场增强而增加,向红端移动的现象,因此同一种元素在恒星上产生的光谱线要比在地球上产生的光谱线更“红”,这一现象直到 1925 年才被观测证实。

至于引力波,爱因斯坦一度怀疑它是否存在。在他去世六十年之后,引力波才被人类首次捕获,观测结果于 2016 年得到证实。如今,美国激光干涉引力波天文台(LIGO)和意大利的 Virgo 天文台仍然在仰望着夜空。它们已经捕捉到双黑洞并合或双中子星并合产生的引力波,最新的一些观测数据还没有完成分析,天文学家认为那可能是黑洞吞噬中子星产生的信号。如果这个猜想最终被证实,那么它将成为相对论带给我们的又一个惊喜。

第二篇黑洞的偏振照片

2017年4月,靠近西半球的十几个望远镜将观测方向共同指向了M87*(M87中心黑洞)。经过两年的数据处理,天文学家终于得到了人类历史上首张黑洞照片。但物理学家不满足于此,为了探寻黑洞周边极端的磁场,黑洞偏振信息也是必不可少的。再经过两年的数据处理,人类终于迎来了首张黑洞偏振照片。

我们都知道光是一种电磁波,而电磁波又是横波,即振动方向和波传播方向垂直的波。而偏振就是横波的一种状态,表示横波中的振动方向都只朝向一个方向。天文中很多现象都会产生偏振光。对于黑洞吸积盘,它在射电波段产生辐射主要来自以相对论性速度运动的电子在磁场中运动发出的光,被称为同步加速辐射。这种辐射具有明显的偏振特征,同时也包含黑洞周边的磁场信息。

天文学家从2019公布黑洞照片后就一直在处理偏振图像数据。起初,它们以为黑洞周围只有1%~3%的光是偏振的。随着数据处理的进行,科学家发现其实10%~20%的光偏振的。因为初步处理对所有数据进行平均时,不同方向的偏振会互相抵消,分辨率较高是EHT能观测到黑洞偏振图像的重要原因之一。黑洞偏振照片图左下角条纹明显而右上角没那么明显,是因为右下角部分图片偏振度更高,左上部分偏振不明显。在动画中也可以看出,随着偏振方向的改变,黑洞右下改变比左上方明显得多。

对黑洞周围的偏振测量具有重要的科学意义,我们能得到黑洞周围更详细的参数,例如黑洞周围平均每立方厘米104~107的粒子密度(地表为每立方厘米1019量级),还有那吸积盘上等离子体中100亿~1200亿开尔文的电子温度等。还可以了解黑洞周围的磁场是如何作用的,以及在这个紧凑空间中如何诞生喷发到遥远宇宙空间的强大喷流的。

除了2019年公布的黑洞照片,M87*还有一张著名的照片,是由哈勃拍摄的它的极端相对论性喷流。不少靠近黑洞的物质都会被它吸入,但也有一部分在这个过程中,被加速到极端相对论性速度,最终形成了这个在宇宙中绵延了5000光年的喷流。

  要了解黑洞是如何产生这样的相对论性喷流,通过偏振照片测到的黑洞周边1~30高斯的磁场(1特斯拉=10000高斯)就是破局的关键之一。在定量比较了从广义相对论磁流体动力学(general relativistic magnetohydrodynamic,GRMHD)模拟的大量模拟极化图像的基础上,天文学家确定了一系列物理模型,可以同时满足黑洞图像的偏振特征和对相对论性喷流的功率需求。

偏振观测还提供了黑洞外磁场结构的新信息。研究小组发现,只有具有强磁化气体的模型才能解释在事件视界上看到的内容。观测表明,黑洞边缘的磁场足够强,可以抵抗引力的吸引,只有穿过磁场的气体才能螺旋着进入事件视界。不过即使是进入黑洞的过程受到了阻碍,根据偏振图像建立的模型表示,M87*每万年都还能吸收3~20个太阳质量的天体,大致相当于每年能吸入66~1000个地球质量。

未来,将有更多的望远镜加入EHT,提升的网络连接质量也将加速数据处理进程。会有更多的黑洞偏振照片被冲洗出来,人类将会获得更多关于黑洞的信息。