狠狠狠狠狠狠狠狠难........高手帮忙解答一下这三个不等式,谢了
2024-02-21 10:36
xyz是正数 1. 证Σ[X^2/(Y^2+Z^2+YZ)]大于等于1 2. X+Y+Z=1 求Σ[X^4/(Y(1-Y^2))]的最小值 3. X^4+Y^4+Z^4=1 求Σ【X^3/(1-X^8)】的最小值
1个回答
(1)
设x,y,z为正实数。求证
x^2/(x^2+y^2+xy)+y^2/(y^2+z^2+yz)+z^2/(z^2+x^2+zx)>=1
证明 去分母得:
x^2*(y^2+z^2+yz)*(z^2+x^2+zx)+y^2*(z^2+x^2+zx)*(x^2+y^2+xy)+z^2*(x^2+y^2+xy)(y^2+z^2+yz)>=(y^2+z^2+yz)*(z^2+x^2+zx)*(x^2+y^2+xy)
展开化简为:
x^4*y^2+y^4*z^2+z^4*x^2>=xyz(zx^2+xy^2+yz^2)
<==> y^2*(x^2-yz)^2+x^2*(z^2-xy)^2+z^2*(y^2-zx)^2>=0
显然成立。
(2)
∑y(1-y^2)=∑y-∑y^3
≤1-1/9=8/9
x^4/[y(1-y^2)]+9y(1-y^2)/64≥3x^2/4(均值不等式)
∑{x^4/[y(1-y^2)]+9y(1-y^2)/64}≥∑3x^2/4
≥1/4
∑x^4/[y(1-y^2)]≥1/4-9∑y(1-y^2)/64
=1/4-(9/64)(8/9)
=1/4-1/8=1/8
不等式获证!
(3)
8x^8*(1-x^8)^8≤(8/9)^9,于是x(1-x^8)≤8^(8/9)/9,
从而x^3/(1-x^8)=x^4/x(1-x^8)≥9x^4/8^(8/9)
同理有y^3/(1-y^8)≥9y^4/8^(8/9)
z^3/(1-z^8)≥9z^4/8^(8/9)
三式相加即可
利用推广的柯西不等式有
(16/x^3+81/8y^3+1/27z^3)*(x+2y+3z)^3≥(2+3+1)^4,
从而16/x^3+81/8y^3+1/27z^3≥1296,
当x/(16/x^3)=2y/(81/8y^3)=3z/(1/27z^3)取等号
怎么只有5分?!(ˇ^ˇ〉
设x,y,z为正实数。求证
x^2/(x^2+y^2+xy)+y^2/(y^2+z^2+yz)+z^2/(z^2+x^2+zx)>=1
证明 去分母得:
x^2*(y^2+z^2+yz)*(z^2+x^2+zx)+y^2*(z^2+x^2+zx)*(x^2+y^2+xy)+z^2*(x^2+y^2+xy)(y^2+z^2+yz)>=(y^2+z^2+yz)*(z^2+x^2+zx)*(x^2+y^2+xy)
展开化简为:
x^4*y^2+y^4*z^2+z^4*x^2>=xyz(zx^2+xy^2+yz^2)
<==> y^2*(x^2-yz)^2+x^2*(z^2-xy)^2+z^2*(y^2-zx)^2>=0
显然成立。
(2)
∑y(1-y^2)=∑y-∑y^3
≤1-1/9=8/9
x^4/[y(1-y^2)]+9y(1-y^2)/64≥3x^2/4(均值不等式)
∑{x^4/[y(1-y^2)]+9y(1-y^2)/64}≥∑3x^2/4
≥1/4
∑x^4/[y(1-y^2)]≥1/4-9∑y(1-y^2)/64
=1/4-(9/64)(8/9)
=1/4-1/8=1/8
不等式获证!
(3)
8x^8*(1-x^8)^8≤(8/9)^9,于是x(1-x^8)≤8^(8/9)/9,
从而x^3/(1-x^8)=x^4/x(1-x^8)≥9x^4/8^(8/9)
同理有y^3/(1-y^8)≥9y^4/8^(8/9)
z^3/(1-z^8)≥9z^4/8^(8/9)
三式相加即可
利用推广的柯西不等式有
(16/x^3+81/8y^3+1/27z^3)*(x+2y+3z)^3≥(2+3+1)^4,
从而16/x^3+81/8y^3+1/27z^3≥1296,
当x/(16/x^3)=2y/(81/8y^3)=3z/(1/27z^3)取等号
怎么只有5分?!(ˇ^ˇ〉
相关问答
狠人狠事为什么下架了
1个回答2023-11-17 05:07
过于暴力和血腥。狠人狠事被下架是因为它的暴力和血腥场景过于真实和残酷,会引起年轻玩家的不良影响。狠人狠事是一款以暴力和血腥为主题的游戏,玩家需要扮演一个暴力犯罪分子,在游戏中进行各种犯罪活动。这种类...
全文狠人狠事人物原型是真的吗
1个回答2023-12-26 20:57
狠人狠事人物原型在生活中可能会找见宏灶蚂,但是这本身是一部现代的都市小说,既然是一部小说,那么小说它就离不开虚构和现实的结合,给小说里面出现的一些事物或者一蔽埋些人,有一部分可能会有生活中的人物原型...
全文在我胸口狠狠的开一枪是什么歌曲
2个回答2023-11-07 00:17
毁心dj阿远歌词: 说好了 各自安好 环形路上亩信 依然跟时间叫嚣 百转千折 想抚平的伤的符号 在绝望的迷途中辗转成歌 惘然间 曲终人散 往事尘封 谁还停在邂逅的地点 愁绪中 用沉默来掩饰 在萧瑟的...
全文